

Contents
1	Executive Summary	3
2	Administration	3
2.1	Living Document	3
2.1.1	Contact Information	3
2.2	Change Process (Change Control)	3
2.3	CSIO Role	4
2.3.1	Access Tracking/Update Logs	4
2.4	Test Environments	4
2.5	Working Groups	4
2.5.1	Composition	4
2.5.2	Parallel Development Paths	5
2.6	Governance	5
2.6.1	Review Process for Changes to the RDS	5
2.6.2	Versioning	5
2.6.3	Backwards Compatibility	5
2.6.4	Acceptable Use Policies	6
2.6.5	Mutual Cooperation	6
3	Data Service Specifications	6
3.1	Messaging Stack	6
3.1.1	SOAP	6
3.1.2	REST	7
3.2	Security	7
3.2.1	Encryption	7
3.2.2	Identification	7
3.2.3	Authentication	8
3.2.4	Authorization	8
3.2.5	Non-Repudiation	8
3.2.6	Request Validation	9
3.3	Data Specification	9
3.4	Service Endpoints and Versioning	10
3.5	Error Handling	10
3.5.1	Dropped Connections	10
3.5.2	HTTP Errors	11
3.5.3	SOAP Faults	12
3.5.4	Framework Status	13
3.5.5	Message Status	15

[bookmark: _Toc49158285]Executive Summary
Reusable data services are things such as API (Application Programming Interface) and Web Services. They are software access points that allow two applications to “talk” (i.e., exchange data) with each other. A well-defined reusable data service makes it easier to develop a software application by providing the building blocks which a programmer then uses to put the blocks together. If the reusable data service on both sides of a transmission speaks the same language there is no translation required. Otherwise, an intermediary is needed to perform the translation for the two applications to communicate which adds another layer of integration, complexity, management, and, therefore, cost.
[bookmark: _Hlk49158740][bookmark: _Toc7343482]By following the Implementation Specifications Guideline for the specific reusable data services contained within these documents, insurance companies and BMS/CMS vendors that implement these services would eliminate a significant amount of the ‘discovery’ process normally associated with new application and systems integration development. The Implementation Specifications Guideline will not apply to every implementation due to differing systems used by each insurance company as well as unique platform used by each of Canada’s leading BMS/CMS vendors.
[bookmark: _Toc49158286]Administration
[bookmark: _Toc12542442][bookmark: _Toc49158287]Living Document
In the spirit of the Data Exchange (DX) Project, it is imperative that all participants freely and openly share what they’ve learned so that development can proceed as fast as possible across the broker distribution channel. By sharing in the development of this or any reusable data service, stakeholders consuming these services will possess the advantage of taking what has been learned and successfully implemented elsewhere as they begin implementing these reusable data services within their own respective system whether it’s on the carrier side or a BMS/CMS.
With each implementation, stakeholders are encouraged to publish what they’ve learned. Anything new or different or something that might have been unique to even just one stakeholder’s implementation, all represent important aspects of what can be learned during the implementation process that might not have been available and included as part of the documentation at the time that particular reusable data service was retrieved from the Reusable Data Services Library. Continued updates to the documentation will benefit all future stakeholders looking to implement the same reusable data service within their system.
[bookmark: _Toc12542469][bookmark: _Toc49158288]Contact Information
[bookmark: _Toc7343508]If you have any questions regarding this document and/or ancillary documents please email DXinfo@ibac.ca
[bookmark: _Toc12542443][bookmark: _Toc49158289]Change Process (Change Control)
As development of each reusable data service is completed, changes to the service will inevitably be necessary as stakeholders begin to implement these services within their own respective systems.
These may include changes to the Implementation Specifications Guideline or components contained within the reusable data services document published in the Reusable Data Services Library.
Each reusable data service that has been created was done so through the effort of an assigned multi-stakeholder Working Group (see Section 2.5). Each Working Group is tasked with developing a reusable data service based on an assigned transaction type. It is the responsibility of the Working Group to develop the Implementation Specifications Guideline for the transaction assigned. Specifically, this activity includes documenting what content should be included within the Implementation Specifications Guideline.
As each reusable data service is implemented and new information is learned as a result of each successive implementation, this information will be shared with the Working Group responsible for having created the specific reusable data service. It is then the responsibility of the Working Group to assess the information provided and determine if that information should be incorporated into the documentation for that specific reusable data service.
The change control process for a reusable data service becomes the responsibility of the Working Group who first created the reusable data service. Once a proposed change to a reusable data service has been accepted by the Working Group, that change will be incorporated into the reusable data service and subsequently published in the Reusable Data Services Library. Changes to a reusable data service will be tracked with applied version control. It is expected that changes will be approved within 30 days of submission.

[bookmark: _Toc12542444][bookmark: _Toc49158290]CSIO Role
The role of the CSIO is to operate and manage the Reusable Data Services Library (RDSL). The Reusable Data Services Library is a repository that contains all the completed reusable data services which then are available to stakeholders to view, download, and implement.
[bookmark: _Toc12542445][bookmark: _Toc49158291]Access Tracking/Update Logs
As stakeholders begin to access and download reusable data services for implementation within their system, changes to these services will occur over time. When a stakeholder has downloaded a specific reusable data service from the Reusable Data Services Library, that stakeholder will be notified when a change to that reusable data service has been made. This allows the stakeholder to assess what changes were made to the reusable data service and determine the appropriate updates that may need to be made to that stakeholder’s system.
[bookmark: _Toc12542446][bookmark: _Toc49158292]Test Environments
When a reusable data service has been created, the Implementation Specifications Guideline for that reusable data service may contain actual code samples which the stakeholder can then evaluate for use within their own respective system.
Upon implementing the reusable data service, it should be tested for compliance. The testing facility or “sandbox” will allow any vendor, carrier, or third party to test their reusable data service for compliance with CSIO data standards. This will allow them to test their reusable data service by running them against a pre-determined set of services that can send and receive transactions that use the same data standards. If there are no errors it will be certified as CSIO compliant.
[bookmark: _Toc12542447][bookmark: _Toc49158293][bookmark: _Ref49159862]Working Groups
[bookmark: _Toc7343490][bookmark: _Toc12542448][bookmark: _Toc49158294]Composition
Research conducted by the Wharton School of Business found that the ideal working group size consists of 5 to 6 members. When more members are added productivity counter intuitively goes down not up. For IBAC Data Exchange Working Groups, the following composition is suggested for each identified Working Group:
· Carrier
· 1 Business Resource
· 1 Technical Resource
· BMS/CMS Vendor
· 1 Business Resource
· 1 Technical Resource
· CSIO
· 1 Resource
· IBAC
· 1 Resource
It’s important to have a business resource on the team to ensure focus of purpose as well as being able to deliver on features and functionality that squarely benefit the broker distribution channel. These benefits can be realized by introducing cost and/or time saving functionality that improves the broker-customer experience.
[bookmark: _Toc7343492][bookmark: _Toc12542449][bookmark: _Toc49158295]Parallel Development Paths
As each reusable data service is developed through the effort of its respective Working Group, it is recognized that multiple Working Groups will be working on other reusable data services at the same time. These efforts will be running in parallel and should not necessarily interfere with one another as the focus for each working group effort will be unique. There may be some overlap with respect to the base CSIO standards being used to carry out the transaction but such overlap would be for background information only.
[bookmark: _Toc12542450][bookmark: _Toc49158296]Governance
[bookmark: _Toc12542452][bookmark: _Toc49158298]Versioning
Multiple revisions to the reusable data service may exist depending on how much work has gone into defining the service. It is expected the latest version is the one most stakeholders will use as they work towards implementing the service within their system.
Prior versions of the reusable data service will be maintained as a way to track its history and usage.
[bookmark: _Toc12542453][bookmark: _Toc49158299]Backwards Compatibility
As reusable data service implementations occur across multiple systems, there will be times when multiple iterations of the standard will exist which may affect those implementations from an application development perspective. While every effort should be made to update a specific stakeholder’s implementation, each will be subject to analysis by that stakeholder in order to determine when updates can or should be done.
[bookmark: _Toc12542454][bookmark: _Toc49158300]Acceptable Use Policies
Information, documentation, methods, including the Implementation Specifications Guideline, and all referenced CSIO standards should be strictly followed. Any implementation of a reusable data service that does not conform to the above will not be supported. This includes unique implementations or any implementation that does not rely on the use and adoption of CSIO standards.
[bookmark: _Toc12542455][bookmark: _Toc49158301]Mutual Cooperation
In the spirit of the 2018 IBAC Data Exchange Partner Statement, it is agreed to share know-how that supports the free flow of data between insurer and BMS/CMS vendor systems. We encourage vendors and insurers to pursue opportunities to advance the broker distribution channel through mutual cooperation and sharing of know-how where practical.
Participants are not expected to share proprietary information or code but we do encourage the sharing Use and Business Case and other operational data along with supporting algorithms.
We understand that individual developments may require contractual language to set out ownership, rights and responsibilities of participants. We leave it to the individual development participants to arrive at mutually satisfactory agreements. Use of the Implementation Specifications Guideline does not create or provide any rights to participants
Reusable Data Service Permission
Permission is hereby granted, free of charge, to any participants provided a copy of reusable data services and associated documentation files from the Reusable Data Services Library to deal in the reusable data service without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute of the reusable data service, and to permit persons to whom the reusable data service is furnished to do so.
Data Service Specifications
The reusable data service is provided "as is", without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the reusable data service or the use or other dealings in the reusable data service.
The following sections describe common data service specifications to be used by all reusable data services. These specifications describe the technology components used to support the data services as well as data structures used in the message payloads that are common to all data services.
[bookmark: _Toc7343499][bookmark: _Toc49158303]Messaging Stack
[bookmark: _Toc7343500]Reusable data services may use either a SOAP messaging stack or a REST messaging stack.
[bookmark: _Toc49158304]SOAP
For SOAP based reusable data services, Web servers and clients will use the SOAP Version 1.2 Messaging Framework to exchange request and response messages. SOAP is a lightweight protocol intended for exchanging structured information in a decentralized, distributed environment. The standard is described in detail at http://www.w3.org/TR/soap12/.
SOAP based reusable data services will use the SOAP Request-Response Message Exchange Pattern. Messages will be exchanged using the SOAP HTTP Binding. This binding of SOAP to HTTP is intended to make appropriate use of HTTP as a transport layer protocol. For example, successful responses are sent with status code 200 and transport level failures are indicated with 3xx, 4xx or 5xx HTTP error codes.
SOAP based reusable data services will use an XML message conforming to the CSIO/ACORD XML version 1.38 schemas to contain the business data of the request and response messages. This XML message will be contained in the body element of the SOAP message.
A summary of the technologies required to support reusable data services is as follows:
· [bookmark: _Toc7343501]TLS v1.2
· HTTP/1.1
· XML v1.0
· SOAP XML v1.2
· CSIO/ACORD XML v1.38
[bookmark: _Toc49158305]REST
For RESTful reusable data services, JSON data payloads will be used which map the CSIO/ACORD XML schema elements and attributes to JSON objects as closely as possible. Services should always return a response message with at least a message status code provided.
GET requests that require authentication using a SignonRq entity or that contain other sensitive information in the request URI will be posted with the X-HTTP-Method-Override header.
A summary of the technologies required to support RESTful reusable data services is as follows:
· TLS v1.2
· HTTP/1.1
· JSON
[bookmark: _Toc49158306]Security
Reusable data services have a wide range of data security requirements that depend on the nature of the data being exchanged. The following sections describe the common security features used for reusable data services. These security features are required to protect the privacy of the customer and service provider data and the integrity of the data service infrastructure while ensuring that the service is readily and easily available to customers in a variety of situations.
[bookmark: _Toc49158307]Encryption
As data is transmitted across the internet between customers, brokers, and insurance provider systems, and through data centers between system components, it must be encrypted to ensure that it cannot be read by unauthorized users. To meet this requirement, servers must enforce Transport Layer Security (TLS) v1.2 or greater. TLS secure sessions must be based on a server certificate signed by a public signing authority (one that would be pre-installed on commonly used web browsers).
Particularly sensitive data including passwords, personal information and banking information must additionally be encrypted while at rest. These fields must be clearly identified as sensitive data in the data specifications of each reusable data service. Care must be taken in implementations to ensure that these fields are not exposed through logging or other operational features of the system.
[bookmark: _Toc49158308]Identification
Data services receive requests from a variety of users and applications that may require identification. These include customers, brokers, underwriters, and vendor systems. Identification refers to the ability to uniquely identify the user or application that is accessing a reusable data service. When authenticated identification is required, users of the reusable data services described in these specifications will be identified by a user account from an identity management system trusted by the service provider and data owner.
In cases where authentication is not required, identity may be based on a combination of data including a customer's name, birth date, address information, and identifiers like policy numbers and claim numbers.
[bookmark: _Toc49158309]Authentication
Authentication is used to prove the identity of a data service user and is provided using a password associated with the user account that identifies the user. The security mechanisms used to communicate this authentication information to a reusable data service will be one or more of the following:
SOAP based:
1. HTTP Basic Authentication (https://tools.ietf.org/html/rfc2617)
2. Web Services Security UsernameToken Profile 1.1
(https://www.oasis-open.org/committees/download.php/13392/wss-v1.1-spec-pr-UsernameTokenProfile-01.htm)
3. Acord SignonRq entity passed in application data payload

REST based:
1. HTTP Basic Authentication (https://tools.ietf.org/html/rfc2617)
2. OpenID Connect (OIDC) 1.0 (https://openid.net/connect/)
3. OAuth 2.0 (https://tools.ietf.org/html/rfc6749)
4. Acord SignonRq entity passed in application data payload

Reusable data services that provide public data do not require user authentication but may require anti-robot detection mechanisms like ReCaptcha to be implemented by the service clients.
[bookmark: _Toc42084548]The choice of one or more of the authentication mechanisms from the above list will be governed by the security standards and practices of the service provider and will be at the discretion of the service provider for each service implementation. Clients will be required to provide authentication in the format required by each service provider with which they interact.
[bookmark: _Toc49158310]Authorization
Authorization mechanisms protect critical resources in a system by limiting access only to authorized users and their applications. They prevent the unauthorized use of a resource or the use of a resource in an unauthorized manner.
Reusable data services will use a role-based security mechanism to provide authorization to resources and functions. Each distinct function and collection of data that can be accessed by a reusable data service will have a named role associated with it. When the user is associated with a role, they will be authorized to use the functions and data associated with that role. Roles should be designed to grant the minimum privileges and access rights necessary for the function that they authorize.
This simple role-based security model will make it easy for data services to be provided which allow users to query the roles that they are associated with and allow administrators to edit the associations of subordinate users. This will allow, for example, the delegation of some authorization from insurance providers to broker offices.
[bookmark: _Toc49158311]Non-Repudiation
Non-repudiation refers to the ability to prove the integrity and origin of data. Common methods to provide non-repudiation include Message Authentication Codes (MAC), and Digital Signatures. MAC codes are useful when two communicating parties have arranged to use a shared secret that they both possess. Digital Signatures are a more powerful mechanism that allow for publicly verifiable non-repudiation. Note that these mechanisms do not provide confidentiality. They both simply append a tag to a message that can be used to verify the author of the message and the integrity of the message data.
When non-repudiation is required, reusable data services will use the SOAP Security Extensions Digital Signature (https://www.w3.org/TR/SOAP-dsig/). This standard specifies the syntax and processing rules for a SOAP header that carries digital signature information within a SOAP Envelope.
[bookmark: _Toc49158312]Request Validation
To protect the infrastructure of service providers, basic request validation is recommended for all request messages as they are received. This validation should consist of verification that the data conforms to the length restrictions for each field and character restrictions for each field's datatype. This is most easily achieved through XML Schema based validation.
[bookmark: _Ref36073083][bookmark: _Toc49158313][bookmark: _Ref36070017]Data Specification
Reusable data services clients will submit a CSIO XML request message and the server will return a CSIO XML response message directly in the SOAP body element as shown in the example in Figure 1. These messages will conform to the ACORD and CSIO XML Schemas.
	<soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope"
 <soap:Header/>
 <soap:Body>
 <ACORD xmlns="http://www.ACORD.org/standards/PC_Surety/ACORD1/xml/"
 xmlns:csio="http://www.CSIO.org/standards/PC_Surety/CSIO1/xml/">
 <SignonRq>
 …
 </SignonRq>
 <ClaimsSvcRq>
 …
 </ClaimsSvcRq>
 </ACORD>
 </soap:Body>
</soap:Envelope>

[bookmark: _Ref506994238]Figure 1: Soap Envelope with ACORD message in Soap Body
For transactions that do not require client authentication and for service implementations that have used HTTP Basic Authentication or the Web Services Security UsernameToken profile to provide this information, the SignonRq portion of the CSIO XML message can omit the optional SIGNONENTITY, however, the SignonRq element of the message is still required for client application details that may be used by the service provider to customize the response according to special requirements of a particular client application. These customizations can be negotiated between client application vendors and service providers and are beyond the scope of this specification.
Business data specific to the reusable data service will be passed in the service request portion of the message. This can be a <BaseServiceRq>, <InsuranceServiceRq>, <ClaimsSvcRq>, <AccountingSvcRq> or <CommonSvcRq> depending on the kind of data required by the particular reusable data service. Detailed specifications for how these elements are used will be provided in the implementation specifications of each reusable data service as determined by it's working group.
A sample ACORD message with the minimum Signon request structure and an example claims service request structure is shown below in Figure 2.
	<ACORD xmlns="http://www.ACORD.org/standards/PC_Surety/ACORD1/xml/"
 xmlns:csio="http://www.CSIO.org/standards/PC_Surety/CSIO1/xml/">
 <SignonRq>
 <ClientDt>2020-03-12T15:48:27-05:00</ClientDt>
 <CustLangPref>en</CustLangPref>
 <ClientApp>
 <Org>ClientOrg</Org>
 <Name>ClientAppName</Name>
 <Version>1</Version>
 </ClientApp>
 </SignonRq>
 <ClaimsSvcRq>
 <ClaimsNotificationAddRq>
 …
 </ClaimsNotificationAddRq>
 </ClaimsSvcRq>
</ACORD>

[bookmark: _Ref42668865]Figure 2: ACORD message with minimal signon and service request elements
[bookmark: _Toc49158314]Service Endpoints and Versioning
Data service providers should support the simultaneous deployment of multiple versions of a reusable data service. To facilitate this, reusable data service URIs will contain a resource segment that identifies the version of the service being provided as shown in the following example:
https://www.example.com/FNOL/V1/
By including a version in the service URI, future versions of the service can be published to a unique URI allowing multiple versions of the service to be available simultaneously and providing backward compatibility. This will enable service clients to upgrade to newer versions of the service on independent release schedules by updating the URI that they consume when they are ready.
[bookmark: _Toc49158315]Error Handling
Calls to data services may result in error conditions at various points of the integration workflow and in components that have different error handling capabilities. From the client perspective there are five different types of error conditions that may be detected:
1) Dropped TCP/IP connections
2) HTTP error codes
3) SOAP faults
4) CSIO Framework status errors
5) CSIO Message status errors
These scenarios are described in the following sections. Error messages returned by a reusable data service should not include implementation details or unauthorized business data in a production or publicly accessible implementation of the API.
[bookmark: _Ref517695625][bookmark: _Toc526336981][bookmark: _Toc49158316]Dropped Connections
There are several conditions that can result in a connection to a reusable data service being dropped. The most likely reason is a bad network connection or the failure of a network component. A state diagram showing how the connection outcome should be handled is shown in Figure 3. Happy path transitions are shown in green and error handling transitions are shown in red.
[image:]
[bookmark: _Ref518389416]Figure 3: Connection Failure Handling
The client response to a dropped connection should be to retry the connection and resend the request message using the same RqUIDs as in the original request message. The outcome will depend on whether or not the original request message had been processed before the connection was dropped. Clients should wait at least 10 seconds before retrying a transaction to prevent the server from being flooded with retry requests and limit the number of retries to a maximum of 3 so that the user is not kept waiting for too long.
Reusable data services may check RqUIDs at the service level of an ACORD message (ex: ACORD/InsuranceSvcRq/RqUID) for duplicates. If a duplicate service level RqUID is detected, it will be rejected as a duplicate.
In the event that the original request message was accepted and processed by the service provider prior to the connection being dropped, a resent request message would fail and an ACORD response message would be returned with a service level status code of 1000 (duplicate RqUID) provided.
In the event that the original request message was not accepted and processed by the service provider prior to the connection being dropped then the RqUID would not be detected as a duplicate and the resent request message would be processed normally.
[bookmark: _Toc526336982][bookmark: _Toc49158317]HTTP Errors
If the connection is not dropped, then the client can expect to receive an HTTP response code for the transaction. There are a few conditions that can result in HTTP error codes being returned from the service provider. For both SOAP and REST services HTTP Error codes can be used to indicate the state of the transaction. A state diagram showing how the HTTP response codes should be handled is shown in Figure 4.
[image:]
[bookmark: _Ref518456370]Figure 4: HTTP Response Code Handling

HTTP 5xx error codes indicate an error in the service. An HTTP 5xx error should be treated by the client in the same manner as a dropped connection. The transaction can be retried a few times after a brief delay. The client should display a status message to the user so that the user knows that the transaction is being retried. Some 5xx error codes indicate more persistent problems than others. Clients are recommended to treat the 501 and 505 error codes as persistent and not bother with retries in those cases.
HTTP 4xx error codes indicate a client error. The client should display an error message to the user and should not retry the request until either the user or client application is able to take corrective action.
HTTP 3xx error codes are not generally used by SOAP web services but should be handled according to the HTTP specifications if encountered.
When an HTTP 200 response code is received the client can proceed to handle the HTTP content. In the case of SOAP services this will be either a SOAP fault or an ACORD XML response message. In the case of REST services this will be a JSON message payload.
[bookmark: _Toc526336983][bookmark: _Toc49158318]SOAP Faults
SOAP Faults are only applicable to SOAP services. SOAP faults can be returned for a number of reasons including invalid request messages (invalid according to the ACORD XML schema) and defects in the reusable data service implementation. SOAP faults are handled as shown in the state diagram in Figure 5.
[image:]
[bookmark: _Ref518456803]Figure 5: SOAP Fault Handling
A client system can attempt to automatically resend a message that resulted in a SOAP fault, but the error will likely re-occur and therefore this is not recommended. If the SOAP fault contains a /Code/Value of "env:Sender", the problem is most likely on the client side of the message exchange and should be referred to the client vendor's technical support. If the SOAP fault contains a /Code/Value of "env:Receiver", the problem is most likely on the service provider side of the message exchange and the problem should be referred to the service provider's technical support.
[bookmark: _Toc526336984][bookmark: _Toc49158319]Framework Status
When a message is processed normally by a reusable data service (i.e.: not a dropped connection, HTTP error or SOAP fault) there will be one or more ACORD Framework status codes included in the ACORD XML or JSON response. A state diagram showing how the ACORD Framework status codes should be handled is shown in Figure 6.
A client should check each of the ACORD framework status codes contained in a response to determine what error handling steps may be needed. The ACORD status (/ACORD/Status/StatusCd) should be checked first, followed by the Signon status (ACORD/SignonRs/Status/StatusCd) and finally the Service status (ex: ACORD/InsuranceSvcRs/Status/StatusCd).
[image:]
[bookmark: _Ref518457832]Figure 6: ACORD Response Handling
The ACORD status (/ACORD/Status/StatusCd) returned by a reusable data service should only ever contain the values 0, 300, 301, or 500. An ACORD status of 300 or 301 indicates that the system or service is not currently available. The client can resend the request at a later time. It is recommended to wait at least 5 minutes before retrying the request. An ACORD status of 500 is returned when the requested service or message is not supported. In this case the client should not attempt to resend the request but should display an error message to the user indicating that the service is not supported.
The Signon status (ACORD/SignonRs/Status/StatusCd) returned by a reusable data service should only ever contain the values 0, 1380, 1420, 1600, 1620, 1740, 1800, 1820, 1840, 1880, 1900, 1910, and 1980. A signon status of 1840 can be resolved by resubmitting the request with a SignonRq including the user's id and password, and requesting a new session key. A Signon status of 1740 indicates an authentication failure and could be the result of an incorrect password or an expired account. The user can be prompted to re-enter their password after which the transaction can be retried. If the Signon status 1740 is continually returned, the user may need to contact the service provider to have their account reset.
The Service status (ex: ACORD/InsuranceSvcRs/Status/StatusCd) returned by a reusable data service will only contain the values 0, 1000, 1360, or 2760. A service status of 1000 indicates that a duplicate request id was detected by the service within a recent period. Service providers should track RqUIDs for a minimum of 24 hours for any service that implements duplicate request checks.
A full list of the ACORD Framework status codes is provided below in Table 1.
	StatusCd
	StatusDesc
	Severity
	Condition

	0
	Success
	Info
	The service provider successfully processed the request.

	1000
	Duplicate <RqUID>
	Error
	A request with this client message identifier RqUID has already been received and processed.

	1360
	<SPName> Invalid
	Error
	The Service Provider name specified in a request was not found or is invalid.

	1380
	<SPName> within <CustId> is invalid
	Error
	The Service Provider Name specified within a customer identification aggregate is invalid.

	1420
	<CustId> invalid
	Error
	The customer identifier CustId specified is invalid or not found.

	1600
	<EncryptionType> not valid
	Error
	EncryptionType not valid or not supported.

	1620
	No <SPName>
	Error
	Ambiguous request, SPName required

	1740
	Authentication Failed
	Error
	The client could not be authenticated due to an incorrect login ID or password.

	1800
	Service Not Authorized For Client
	Error
	Customer is not eligible to use this service. (i.e. Insurance or Surety)

	1820
	Client Session Already In Progress
	Error
	The service provider supports only one session at a time per customer and there is already an active session for this CustId. Please try again later.

	1840
	No Client Session In Progress
	Error
	The specified client does not have a session in progress.

	1880
	Client Locked Out
	Error
	The service provider has received too many failed authentication attempts for this client or has detected other suspicious activity. Please call the technical support telephone number.

	1900
	Password Change Required
	Warn
	The Logon is successful but the client must enter a new password before any other messages will be allowed.

	1910
	Must Change Password
	Error
	The client must change their password before any other messages will be allowed. [This means the password has expired or is invalid. We will not continue any processing.]

	1980
	Unsupported Application ID
	Error
	The service provider does not support messages from the client application identified by ClientApp.

	2760
	Invalid Language Code
	Error
	The service provider does not support the specified language or the language code is not valid in International Standards Organization 639.

	300
	System Not Available
	Error
	The service provider for this transaction is not available due to a technical problem. Try again later. This code should only be used at the Root level in conjunction with a server failure.

	351
	Service Not Available
	Error
	ACORD: The service selected is not available. Try again later.

	500
	Unsupported Service
	Error
	The service provider does not support the specified service offering.

[bookmark: _Ref518465999]Table 1: ACORD Framework Status Codes

[bookmark: _Toc526336985][bookmark: _Toc49158320]Message Status
When all of the ACORD Framework status codes returned by a reusable data service are 0, the next thing a client should check is the message status contained in the MsgStatus element of the response. A state diagram showing how the message status should be handled is shown in Figure 7.
[image:]
[bookmark: _Ref518467847]Figure 7: Message Status Handling
The MsgStatus element uses a two level hierarchy. The first level of the hierarchy is a message status contained in a MsgStatusCd element. The second level is an error status contained in a MsgErrorCd element. The MsgErrorCd is only set when the MsgStatusCd has the value "Error". Therefore, a client should first check the MsgStatusCd and only check the MsgErrorCd when the MsgStatusCd is "Error".
The MsgErrorCd values of "NotAvailable" and "Unsupported" should not normally be encountered since these conditions would have already been handled by the ACORD status codes 300 and 500 detected in the higher level ACORD/Status element. When a "GeneralFailure" is detected, a message should be displayed and the transaction processing should exit.
The MsgStatusCd value of "PendingNeedInformation" will normally occur when required fields are missing from the request. The client should collect the missing information and resubmit the request with the missing information included. If the client cannot provide the missing information the transaction should be cancelled.
A MsgStatusCd value of "Success" or "SuccessWithInfo" indicates that the transaction has succeeded and has been committed in the service provider system. In the case of "SuccessWithInfo" there may be informational or warning messages included with the response.

image1.emf
StartSubmit TransactionRe-submit TransactionHandle ResponseConnection Failure HandlingExitCheck HTTP CodeWaitConnectionFailureHTTPResponseExceed retrylimit

image2.emf
StartSubmit TransactionRe-submit TransactionHandle ResponseCheck HTTP CodeInternal Server ErrorExitHandle Other HTTP CodeExitHandle HTTP ContentHTTPResponseWaitother500200Exceed retrylimit

image3.emf
Handle SOAP FaultSender ErrorReceiver ErrorExitExitStartSubmit TransactionHandle ResponseCheck HTTP CodeHandle HTTP Contentenv:Sender200HTTPResponseenv:ReceiverSOAPFault

image4.png

image5.emf
Check Message StatusSuccessReview MessagesCheck Message Error CodeDisplay ErrorCollect Missing or Invalid InformationService Not AvailableService Not SupportedEndStartCheck ACORD StatusCheck Signon StatusCheck Service StatusSubmit TransactionRe-submit TransactionHandle ResponseCheck HTTP CodeHandle HTTP ContentExitExitExitExitWaitSuccessUnsupported0Exceed retry limit200CancelHTTP ResponseErrorACORD ResponseSuccessWithInfo0NotAvailable0OKPendingNeedInformationGeneralFailure

